
 EE 491 Senior Design May 2018 Group
Meeting
September 2017~May 2018
Client: Vishal Mahulkar
Advisor: Dr. Hegdey Chinmay

Safe Communication Between Lead and
Following Vehicle

Week 12~14 Bi-Weekly Report

Team Members:
Bradley Stiff- Software Lead, Project Lead
Justin Wheeler- Software Lead
Sanguk Park- Scribe Lead, Communication Lead
Zhize Ma- Scribe Lead, Hardware Lead
Junho Chun- Hardware Lead
Yifan Lu- Hardware Lead
Jose Candelario- Project Lead, Communication Lead

Past Week Accomplishments:
XBee & Adafruit GPS Testing

As stated in the previous biweekly report we got the our new devices in such as the
Adafruit GPS, XBee Pro S3B, and other components to help us test them out as well as
interface with each other and our Raspberry Pi. We spent the weekend figuring out how to
properly connect to the Adafruit GPS. On Monday April 9th we decided to take out the GPS
along with the new XBee system out to test several things such as the frequency at which the
GPS was outputting the data, make sure no packets were being lost in transmission, the
distance at which the Xbees were too far apart to receive any information, and how well the
devices did when the vehicles were travelling at faster speeds.

First we tested the distance at which we still got information from the gps using the XBees. They
came rated at 900 MHz with 9 mile line of sight and 2000 feet for urban area. In order to test this
we parked one of the cars at the red dot in the pictures below. The first picture shows all the
route data that we took while we were at intrans. As you can see there was a constant inflow of
data in most parts except in the middle. The following two pictures were tests to see why this
happened and we concluded that it had to do with the antennas both being inside the car at that
point.

The picture below shows that as we went around a building we lost connection. This was at
roughly 250 meters away. During this turn we had both antennas inside the car so we decided
to redo the loop with one car still at the red dot but with both antennas outside of the car.

The picture below shows what happened when we had both antennas outside the car. As you
can see we didn’t lose any amount of data as we went around the building. The line going up
farther north cannot be used for this same purpose since in that one the following car was not
parked anymore and started following the car. This was part of the second part of the
experiment where we drove at different velocities around Intrans and checked to see if there
was a loss in data received.

Since the speed limit around Intrans is not very large and data was being received consistently
we decided to use our old code from Matlab to test how well it was transmitted at higher speeds
on the highway. We tested several values going from 30mph up to 70 mph. The data at each
gave the following graphs (all returned the same graph):

From top left to bottom right the tests were 65 mph, 60 mph, 55 mph and 50 mph. The pulses
that can only be found in the first graph signify lost data. As we can see there was consistently
little to no data lost at these high speeds which makes us conclude that we can transmit this
information at relatively high speeds. We also checked the amount of time it required for our
program to finish sending the 10,000 characters that we were sending and the results are as
follows:
Elapsed time is 30.120037 seconds.
>> ReceivingLoop
Elapsed time is 26.556675 seconds.
>> ReceivingLoop

Elapsed time is 28.530673 seconds.
>> ReceivingLoop
Elapsed time is 22.465335 seconds.
>> ReceivingLoop
Elapsed time is 27.752628 seconds.
>> ReceivingLoop
Elapsed time is 29.068317 seconds.
>> ReceivingLoop
Elapsed time is 22.337616 seconds.
>> ReceivingLoop
Elapsed time is 23.468265 seconds.
>> ReceivingLoop
Elapsed time is 26.365071 seconds.
>> ReceivingLoop
Elapsed time is 23.138971 seconds.
>> ReceivingLoop
Elapsed time is 32.510003 seconds.
>> ReceivingLoop
Elapsed time is 22.865831 seconds.
>> ReceivingLoop
Elapsed time is 22.661788 seconds.
All these times are relatively close to each other. Because of this we can attribute it to the
nature of our own test where we have a receiving and sending loop that have to coordinate
together and hence would cause the elapsed time to vary by a few seconds due to human error.
If there was data lost we would have seen large amount of differences between times such as
over 10 seconds.

Lastly we also checked several things about the GPS. First we checked to see if the GPS was
actually sending information at 10Hz. Once we got all the data back we noticed that in reality
information was actually being sent out every 5 Hz and the reason we would get information at
10 Hz was because it was echoing every piece of information and sending it twice. Over the
next week this became one of the top priorities to fix.

Fixing Frequency Problem
Throughout the last two weeks, we got the GPS set up and running through Python. However,
it was running at 1 Hz which didn’t meet the 10 Hz requirement. We were using an interface
through Python which ran an instance of GPSD in the background and created a socket to
communicate with it. The only problem is we couldn’t figure out how to write to the GPS, or
send commands, through the GPSD interface which was still supported. We were able to
update the GPS settings by opening a seperate serial connection, but the settings would be
overwritten after GPSD would startup and run its setup operations.

In order to resolve this issue, we used an open-source library created by Adafruit called
CircuitPython. This required a massive overhaul of our code on the RPi, but helped us open a
single serial connection to write and read data from the GPS. This allowed us to send
commands to the GPS without having them get overwritten. With this, we were able to achieve
setting the GPS at 10Hz.

Adding Baud Rate Detection
One thing we realized while working with the GPS is it defaults to a baudrate of 9600 which can
be a problem when running at 10Hz. For this reason, we want to run the GPS at a baudrate of
115200, but this causes an issue since it can change at any time. For this, we found a simple
solution by creating a subprocess within the RPi code in Python which would parse the output of
Set teletype (stty) command. This gave us the baudrate the port was currently running at so we
could create the serial connection with the current baudrate and change the GPS to run at a
baudrate of 115200 if it wasn’t already while changing the serial connection baudrate at the
same time.

Soldering Connectors for PX2 & Devices
Since all the connectors for power need fit for the RigRunner, so we need solder all the
connectors by ourselves.

First, we find out that PX-2 powered by a PCI-E 8-pin connector with 12-V DC. In this case, it do
not need any power transfer. We can directly solder it to Powrpole connectors. As shown below,
beside the connector, we add a switch that can also control on/off.

(Before Soldering)

(After soldering)

Individual Contributions (4/7~4/20)
Team
Member

Contribution Weekly
Hours

Total Hours

Brad Stiff Installed PyCharm and Mini GPS Tool to debug
GPS transmission software. Created script to
reformat GPS data log, and attempted to parse
data with Python.

16 119

Jose
Candelario

Took info from GPS and XBee. Created graphs
and maps of the information that we got from
these tests.Created reports from theses as well as
analysed potential solutions to other small
problems we were having.

26 124

Junho
Chun

Helped soldering connector for PX2. Finished up
Poster, Final report, and Bi-weekly Report.

12 81

Justin
Wheeler

Switched from using GPSD and moving to a
CircuitPython open-source library to gather the

45 119

GPS data through a single serial connection. Also
added auto port for both the XBee and GPS so
they can be plugged into any USB port and they’ll
work. Added auto configuration during setup for
the GPS to run at a baud of 115200 at 10Hz.

Sang Uk
Park

Helped Solder the PCIE chords with the switch
and looked into the connections for the PX2
powering system.

13 92

Yifan Lu Performed new Xbee/Antenna range &
performance tests. Finishing up Final report and
poster.

12 81

Zhize Ma Help test Xbee with Antenna range and
performance. Solder connector for PX-2. Help on
poster, final report and Bi-weekly report.

22 96

