

EE 491 Senior Design May 2018 Group
Meeting
September 2017~May 2018
Client: Vishal Mahulkar
Advisor: Dr. Hegdey Chinmay

Safe Communication Between Lead and
Following Vehicle

Week 4 Report

Team Members:
Bradley Stiff- Software Lead, Project Lead
Justin Wheeler- Software Lead
Sanguk Park- Scribe Lead, Communication Lead
Zhize Ma- Scribe Lead, Hardware Lead
Junho Chun- Hardware Lead
Yifan Lu- Hardware Lead
Jose Candelario- Project Lead, Communication Lead

This Week’s Accomplishments:
For this meeting, we had a big talk about the software part of the project. The software aspect of
our project is key in making sure that we receive and transmit the data in a format that can be
suitable for the teams to observe and predict what certain actions will go through the following
car. Our software team: Justin and Brad, are responsible of receiving that information from each
of the two cars and making sure that the data communication between the cars are consistent to
the data output by the sensors. For the first three weeks, our group has been going over the
hardware aspects and all of the sensors that are included within our project. We also needed a
big briefing on the software portion of the project.

For this meeting, we met up with one of the lead controls members to have us walk
through the software role of this project. Our software team were to use an ROS (robot

operating software) do observe the data between the cars and make sure that each car was
transmitting and receiving the correct data. From the controls group lead our software group
was given the following instructions:

● For PC, the computer most have dual operating systems with the second OS being
Ubuntu 16.04.3 LTS

● ROS > Lunar Loggerhead
● Install ROS at ros.org > download> Ubuntu 16.014.3 > Follow the steps listed on the

website
● Open sensors’ files and create an archive. Make sure to upload them on sharepoint.
● When using the ROS, it uses commands used on the robot parts: Python, C++

The control groups lead gave us a brief explanations on the technical roles that the ROS plays
in the communication between the computer and the sensors. From his briefing, we found out
that the robot operating system functioned as a middle ground for both the lead and following
vehicle. The data that was transmitted by the lead vehicle would be sent to both the ROS and
the following vehicle and the controls team can observe the data that is transmitted between
them. Although the car itself has its own eyes and ears utilizing the hardware sensors, the
software that communicates between them.

The Hardware Specs:

The Radar
For this week, we also looked into the specs of the sensors that we were working with in order
to gain a better idea of what format of output and the function that they each served. The data
sheet for the radar shown below:

We were initially working with wiring the DB9 cable of the radar which would enable the
observation of its output data. From this spreadsheet, we were to base the wiring off these
specifications.

Pin Number Singal Port Color

1 Battery (+24V) Red

2 USB D+ (Green Wire) Green (USB)

3 USB D- (White Wire) White (USB)

4 Ground Black

5 USB Ground (Black Wire) Black (USB)

6 PRVCANL Green

7 Ignition (+24V) White

8 USB +5V (Red Wire) Red (USB)

9 VEHCAN L Blue

10 VEHCAN H Brown

11 VEHCAN Shield

12 PRVCANH Orange

The ESR has a long range of 174 meters with a view of 20 degrees but it also has a medium
range of 60 meters with a view of 90 degrees. Both modes can update at the same speed.

The Camera

The current specs of the camera are shown below, but currently our camera is still in the ordering
progress, but we do know that the specs will be consistent with the ones shown above

 BFS-U3-51S5M BFS-U3-51S5C

Firmware Version 1605.1.3.0 1605.1.3.0

Resolution 2448 x 2048 2448 x 2048

Frame Rate 75 FPS 75 FPS

Megapixels 5.0 MP 5.0 MP

Chroma Mono Color

Sensor Sony IMX250, CMOS, ⅔” Sony IMX250, CMOS, ⅔”

Readout Method Global Shutter Global Shutter

Pixel Size 3.45 um 3.45 um

Lens Mount C-mount C-mount

ADC 10 bit / 12 bit 10 bit / 12 bit

Minimum Frame Rate 1 FPS 1 FPS

Gain Range 0 to 47 dB 0 to 47 dB

Exposure Range 6 us to 30 s 6 us to 30 s

Acquisition Modes Continuous, Single Frame, Multi
Frame

Continuous, Single Frame,
Multi Frame

Partial Image Modes Pixel binning, decimation, ROI Pixel binning, decimation,
ROI

Image Processing Gamma, look up table, and
sharpness

Color correction matrix,
gamma, look up table, hue,
saturation, and sharpness

Sequencer Up to 8 sets using 2 features,
exposure and gain

Up to 8 sets using 2
features, exposure and

gain

Image Buffer 240 MB 240 MB

User Sets 2 user configuration sets for
custom camera settings

2 user configuration sets
for custom camera settings

Flash Memory 6 MB non-volatile memory 6 MB non-volatile memory

Opto-isolated I/O 1 input, 1 output 1 input, 1 output

Non-isolated I/O 1 bi-directional, 1 input 1 bi-directional, 1 input

Auxiliary Output 3.3V, 120 mA maximum 3.3V, 120 mA maximum

Interface USB 3.0 USB 3.0

Power Requirements 8-24V via GPIO OR 5V via USB
3.0 interface

8-24V via GPIO OR 5V via
USB 3.0 interface

Power Consumption 3 W maximum 3 W maximum

Dimensions/Mass 29 mm x 29 mm x 30 mm / 36g 29 mm x 29 mm x 30 mm /
36g

Machine Vision
Standard

USB3 Vision v1.0 USB3 Vision v1.0

The Lidar
Power supply

24VDC
1.5A(max)
Protection

Short Circuit
Over Current
Over Voltage

Ripple
1-2%Vpp

Use Quanergy Processing Unit (QPU)
-pre configured at the factory as a complete solution that includes necessary source code,
library, and third party applications.

We need also(to make it work)
Power Source

To power the sensor, we need to do this efficiently and take the other sensors into
account.(mobile battery required for all the sensors)
Mouse+keyboard+Monitor

Support computing environment.
Mounting surface

Affix the sensor(I believe the Mechanical team will probably handle this)
Ethernet switch + Power adaptor

To handle multiple sensors, Netgear ProSafe GS108 recommended
GPS/IMU module

Report position and supply the NMEA/PPS timing signals(OXTS RT3003 and
VectorNav200 are supported by Quanergy)

Lidar has multiple returns(3)

Maximum, Second Strongest, and Last
Need to connect sensor to Ubunta Host computer

Page 26 really talks about the process in how to connect it
Laser Firing:

Sensor spins at 10Hz
Lasers fire at 53,828Hz
They fire at 8 different angles

(+3.2 to -18.25 degrees)

For debugging:
(get a power adapter with blinking light for debugging)

Get Infrared (IR) scope to see the rapid, rhythmic laser flashes.
The Q-view application’s Dashboard lets you check a sensor’s health and any error codes that
might pop up.
The M8 Sensor Settings Management application’s Versions tab reports versions of the
software associated with the M8 sensor.

Individual Contributions (9/15~9/22)
Team
Member

Contribution Weekly
Hours

Total Hours

Brad Stiff Researched C++/Python support with ROS Lunar.
Began to learn Python by completing online
tutorials. Also looked into working with the ROS
software in Ubuntu terminal.

4 15

Jose
Candelari
o

DId some more research on Lidar. Started looking
into DSRC as a solution.

4 12

Junho
Chun

Did research on the radar sensors and looked up
datasheet and spec for radar.

3 13

Justin
Wheeler

Completed ROS tutorials to get more familiar with
how it works. Also, refreshed myself with C++ and
Python.

3 9

Sang Uk
Park

Did research on the lidar sensors and researched
data on the wiring of the radar cables to enable the
observation of the output data

3 15

Yifan Lu Looked over GPS data sheet and specs. Looking
into cellular platform as an alternative
communication method

3 12

Zhize Ma Worked on camera search and datasheet,
discussed about data transmission method

3 14

